29 research outputs found

    Empirical Analysis of Aerial Camera Filters for Shoreline Mapping

    Get PDF
    Accurate, up-to-date national shoreline is critical in defining the territorial limits of the Unites States, updating nautical charts, and managing coastal resources. The National Oceanic and Atmospheric Administration (NOAA) delineates the interpreted shoreline photogrammetrically using tide-coordinated stereo photography acquired with black-and-white infrared emulsion. In this paper, we present the results of a two-phased study aimed at quantifying the effect of camera filter selection on the interpreted shoreline when utilizing this method of shoreline mapping

    A Sensor Fusion Approach to Coastal Mapping

    Get PDF
    NOAA’s National Geodetic Survey (NGS) is responsible for mapping the national shoreline. This shoreline provides the critical baseline for demarcating the United States’ marine territorial limits, including its Exclusive Economic Zone; and is used in updating NOAA nautical charts and management of coastal resourses. NGS conducted a data fusion research project in collaboration with the Joint Airborne Lidar Bathymetric Technical Center of Expertise (JALBTCX) and other NOAA partners. In March and April of 2004, hyperspectral imagery, topographic lidar data, and highresolution digital color imagery were collected simultaneously aboard the NOAA Citation for coastal project areas in Florida and California. The data are being used to support a number of research objectives, including shoreline extraction and feature attribution, and coral reef mapping. The details of the simultaneous data acquisition with three different sensors are presented along with preliminary results from our shoreline mapping research

    A procedure for developing an acceptance test for airborne bathymetric lidar data application to NOAA charts in shallow waters

    Get PDF
    National Oceanic and Atmospheric Administration (NOAA) hydrographic data is typically acquired using sonar systems, with a small percent acquired via airborne lidar bathymetry for near‐shore areas. This study investigated an integrated approach for meeting NOAA’s hydrographic survey requirements for near‐shore areas of NOAA charts, using the existing topographic‐bathymetric lidar data from USACE’s National Coastal Mapping Program (NCMP). Because these existing NCMP bathymetric lidar datasets were not collected to NOAA hydrographic surveying standards, it is unclear if, and under what circumstances, they might aid in meeting certain hydrographic surveying requirements. The NCMP’s bathymetric lidar data are evaluated through a comparison to NOAA’s Office of Coast Survey hydrographic data derived from acoustic surveys. As a result, it is possible to assess if NCMP’s bathymetry can be used to fill in the data gap shoreward of the navigable area limit line (0 to 4 meters) and if there is potential for applying NCMP’s bathymetry lidar data to near‐shore areas deeper than 10 meters. Based on the study results, recommendations will be provided to NOAA for the site conditions where this data will provide the most benefit. Additionally, this analysis may allow the development of future operating procedures and workflows using other topographic‐ bathymetric lidar datasets to help update near‐shore areas of the NOAA charts

    Geodatabase Development to Support Hyperspectral Imagery Exploitation

    Get PDF
    Geodatabase development for coastal studies conducted by the Naval Research Laboratory (NRL) is essential to support the exploitation of hyperspectral imagery (HSI). NRL has found that the remote sensing and mapping science community benefits from coastal classifications that group coastal types based on similar features. Selected features in project geodatabases relate to significant biological and physical forces that shape the coast. The project geodatabases help researchers understand factors that are necessary for imagery post processing, especially those features having a high degree of temporal and spatial variability. NRL project geodatabases include a hierarchy of environmental factors that extend from shallow water bottom types and beach composition to inland soil and vegetation characteristics. These geodatabases developed by NRL allow researchers to compare features among coast types. The project geodatabases may also be used to enhance littoral data archives that are sparse. This paper highlights geodatabase development for recent remote sensing experiments in barrier island, coral, and mangrove coast types

    Very Shallow Water Bathymetry Retrieval from Hyperspectral Imagery at the Virginia Coast Reserve (VCR\u2707) Multi-Sensor Campaign

    Get PDF
    A number of institutions, including the Naval Research Laboratory (NRL), have developed look up tables for remote retrieval of bathymetry and in-water optical properties from hyperspectral imagery (HSI) [6]. For bathymetry retrieval, the lower limit is the very shallow water case (here defined as \u3c 2m), a depth zone which is not well resolved by many existing bathymetric LIDAR sensors, such as SHOALS [4]. The ability to rapidly model these shallow water depths from HSI directly has potential benefits for combined HSI/LIDAR systems such as the Compact Hydrographic Airborne Rapid Total Survey (CHARTS) [10]. In this study, we focused on the validation of a near infra-red feature, corresponding to a local minimum in absorption (and therefore a local peak in reflectance), which can be correlated directly to bathymetry with a high degree of confidence. Compared to other VNIR wavelengths, this particular near-IR feature corresponds to a peak in the correlation with depth in this very shallow water regime, and this is a spectral range where reflectance depends primarily on water depth (water absorption) and bottom type, with suspended constituents playing a secondary role

    Linking goniometer measurements to hyperspectral and multi-sensor imagery for retrieval of beach properties and coastal characterization

    Get PDF
    In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR\u2711). Focus areas for VCR\u2711 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties and shallow water bathymetry. A priority for VCR\u2711 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR\u2711
    corecore